The evolution and diversification of S-locus haplotypes in the Brassicaceae family.

نویسندگان

  • Kristina Edh
  • Björn Widén
  • Alf Ceplitis
چکیده

Self-incompatibility (SI) in the Brassicaceae plant family is controlled by the SRK and SCR genes situated at the S locus. A large number of S haplotypes have been identified, mainly in cultivated species of the Brassica and Raphanus genera, but recently also in wild Arabidopsis species. Here, we used DNA sequences from the SRK and SCR genes of the wild Brassica species Brassica cretica, together with publicly available sequence data from other Brassicaceae species, to investigate the evolutionary relationships among S haplotypes in the Brassicaceae family. The results reveal that wild and cultivated Brassica species have similar levels of SRK diversity, indicating that domestication has had but a minor effect on S-locus diversity in Brassica. Our results also show that a common set of S haplotypes was present in the ancestor of the Brassica and Arabidopsis genera, that only a small number of haplotypes survived in the Brassica lineage after its separation from Arabidopsis, and that diversification within the two Brassica dominance classes occurred after the split between the two lineages. We also found indications that recombination may have occurred between the kinase domain of SRK and the SCR gene in Brassica.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the S-locus region in Arabidopsis relatives.

The S locus, a single polymorphic locus, is responsible for self-incompatibility (SI) in the Brassicaceae family and many related plant families. Despite its importance, our knowledge of S-locus evolution is largely restricted to the causal genes encoding the S-locus receptor kinase (SRK) receptor and S-locus cysteine-rich protein (SCR) ligand of the SI system. Here, we present high-quality seq...

متن کامل

Does frequency-dependent selection with complex dominance interactions accurately predict allelic frequencies at the self-incompatibility locus in Arabidopsis halleri?

Frequency-dependent selection is a major force determining the evolutionary dynamics of alleles at the self-incompatibility locus (S-locus) in flowering plants. We introduce a general method using numerical simulations to test several alternative models of frequency-dependent selection on S-locus data from sporophytic systems, taking into account both genetic drift and observed patterns of domi...

متن کامل

Secondary Evolution of a Self-Incompatibility Locus in the Brassicaceae Genus Leavenworthia

Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as rec...

متن کامل

GENETICS OF SEX Self-Incompatibility in Brassicaceae: Identification and Characterization of SRK-Like Sequences Linked to the S-Locus in the Tribe Biscutelleae

Self-incompatibility (SI) is a genetic system that prevents self-fertilization in many Angiosperms. Although plants from the Brassicaceae family present an apparently unique SI system that is ancestral to the family, investigations at the S-locus responsible for SI have been mostly limited to two distinct lineages (Brassica and Arabidopsis-Capsella, respectively). Here, we investigated SI in a ...

متن کامل

Self-Incompatibility in Brassicaceae: Identification and Characterization of SRK-Like Sequences Linked to the S-Locus in the Tribe Biscutelleae

Self-incompatibility (SI) is a genetic system that prevents self-fertilization in many Angiosperms. Although plants from the Brassicaceae family present an apparently unique SI system that is ancestral to the family, investigations at the S-locus responsible for SI have been mostly limited to two distinct lineages (Brassica and Arabidopsis-Capsella, respectively). Here, we investigated SI in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 181 3  شماره 

صفحات  -

تاریخ انتشار 2009